FFT notes

· Used in image and signal processing, fast polynomial multiplication

· Breakthrough Algorithm

· We will apply FFT to polynomial multiplication

Polynomial of degree N-1 is completely determined by its value at N different points

p1  =  3x3 – 2x2 + 4x – 2
(determined by value at 4 points)

p2  =  5x + 3


(determined by value at 2 points)

Multiplication of two degree N-1 polynomials yields a polynomial of degree  2N-2

p3  =  2x2 – 3x + 1

p4  =  x2 + 2x + 2

p3 * p4  =  2x4 – x3 – x2 – 4x + 2

We need to find the product polynomial’s value at 2N-1 points to completely determine it

We can find the value of the result polynomial by evaluating the two polynomials at the point, and multiplying the results

Simple Algorithm for multiplying 2 polynomials of N-1 degree:

1.
Evaluate two polynomials at 2N-1 different points

2.
Multiply two values obtained at each point

3. Interpolate to find the unique result polynomial that has the given value at these points

Let r(x) be the product polynomial  s.t.

r(x) = p(x) * q(x)

Let 

p(x)  = 1 + x + x2
q(x) = 2 – x +x2
p(x) and q(x)  2 = N-1  (  N = 3  (  2N – 1 = 5
Let’s evaluate p(x) and q(x) at some 5 points, -2, -1, 0, 1, 2

p(-2) = 3
p(-1) 1

p(0) = 1
p(1) = 3
p(2) = 7

q(-2) = 8
q(-1) 4

q(0) = 2
q(1) = 2
q(2) = 4

r(-2) = 24
r(-1) =4 
r(0) = 2
r(1) = 6
r(2) = 28

Coefficients of r(x) can be found by interpolation using Lagrange formula

Lagrange Formula:

r(x) = 
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Ex: 
y = p(x) is a polynomial degree 3,   s.t. r(1) = 3,   r(2) = 7, and   r(3) = 13
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which simplifies to 
r(x)  =  x2 + x + 1

What is the complexity of this way of polynomial multiplication?

Most convenient points for polynomial interpolation are complex numbers, specifically the complex roots of unity.

sometimes the imaginary parts can cancel out in complex multiplication:

( 1 + i )4 = -4

( 1 + i )8 = 16   
If we divide the equation here by 16 = 
[image: image3.wmf]8

2

  we get


[image: image4.wmf]8

2

2

1

÷

ø

ö

ç

è

æ

+

i

 = 1

There are exactly n complex roots of unity, s.t.  exists a complex number c where

cn = 1
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 = 1 is the first root of unity

all roots can be found by raising the principal root to the kth power  k = 0, 1, 2, 3 .. n-1

The sixth roots of unity are as follows
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Note that for even n      
[image: image13.wmf]2

/

n

n

w

 =   -1  because  
[image: image14.wmf](

)

2

2

/

n

n

w

  = 1

For example
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Why?  Because
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Therefore
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 =  1  by definition of roots of unity  (shows 
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General Rule is:

The nth power of any nth root of unity = 1,  

i.e.
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Basic idea for FFT is to evaluate the N-1 degree polynomial at all Nth roots of unity

Given two N-1 degree polynomials, we have to evaluate them at 2N-1 points

We can view a polynomial degree of N-1 as a polynomial of degree 2N-2, with n-1 coefficients equal to zero

Example 

N = 8

p(x)
= p0  +  p1x  +  p2x2  +  p3x3  +  p4x4  +  p5x5 + p6x6  +  p7x7  

=  (p0   +  p2x2  +  p4x4 + p6x6)   +    x (p1   +  p3x2  +  p5x4 + p7x6)

=  pL(x2)  + xpR(x2)

Note: 

If you square a root of unity, you get another root of unity. Suppose we consider  the kth Nth root of unity squared: 
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0  (  k  <  N

if  
2k < N, then clearly it is a different Nth root of unity

if  
2k ( N,  
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if 
k = 0, it is the same Nth root of unity

if 
2k % N = 0,  it is clearly a different Nth root of unity

else
2K % N > 0,  it is the (2k – N)th Nth root of unity, different than the kth root


2k – N  ( k because if it did it would imply that  k = N (which is not an Nth root of unity)

Note: 

If you square a root of unity, you get an ½ Nth root of unity

Given a 8th root of unity, 
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which implies that 
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  ,  i.e. some kth 4th root of unity

In general,  
[image: image39.wmf](

)

(

)

2

/

2

N

k

N

w

 =  1   

Now, to compute a polynomial with N coefficients (N-1 degree) on N points, we split it into two polynomials with ½ N coefficients, and so the divide and conquer approach with an exponential size reduction is created.

Background:

Degree 7 polynomial has 8 coefficients (we evaluate at the eight  8th roots of unity)

8th Roots of unity
(
(8   =   
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But  
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8th Roots of unity
(
(8   =   
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Squaring each root produces two consecutive sequences of the 4th roots of unity
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So  p(x)  =  =  pL(x2)  + xpR(x2)

Now we evaluate p(x) at the 8th roots of unity

p(
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note: pL evaluated at four values ; pR evaluated at four values  (
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If we evaluate p(x) at the 8th roots on unity, we evaluate pL and pR at the 4th roots of unity, which necessitates evaluation of pLL, pLR pRL pRR at the 2nd roots of unity. This is the last step as the 2nd roots of unity are 1 and –1.

Assuming that N = 2k, the recursion needs to go through log2n levels for an evaluation at N = 2k  roots of unity.

T(n)  =  2 * T(
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( i.e.  T(8) :  eight multiplications plus recursively twice at four multiplications )

The values of the Nth roots of unity are
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Eighth Roots of Unity:

cos(0) + i sin(0), 

cos(2Π/8) + i sin(2Π /8),

cos(4Π /8) + i sin(4Π /8),

cos(6Π /8) + i sin(6Π /8),

cos(8Π /8) + i sin(8Π /8),

cos(10Π /8) + i sin(10Π /8),

cos(12Π /8) + i sin(12Π /8),

cos(14Π /8) + i sin(14Π /8)

	
	8th Roots of Unity
	
	

	
	
	
	
	

	cos(0)
	1.0000
	
	i *
	0

	
	
	
	
	

	cos(45)
	0.7071
	+
	i *
	0.7071

	
	
	
	
	

	cos(90)
	0.0000
	+
	i *
	1.0000

	
	
	
	
	

	cos(135)
	-0.7071
	+
	i *
	0.7071

	
	
	
	
	

	cos(180)
	-1.0000
	+
	i *
	0.0000

	
	
	
	
	

	cos(225)
	-0.7071
	+
	i *
	-0.7071

	
	
	
	
	

	cos(270)
	0.0000
	+
	i *
	-1.0000

	
	
	
	
	

	cos(315)
	0.7071
	+
	i *
	-0.7071

	
	
	
	
	

	
	4th Roots of Unity
	
	

	
	
	
	
	

	cos(0)
	1.0000
	
	i *
	0.0000

	
	
	
	
	

	cos(90)
	0.0000
	
	i *
	1.0000

	
	
	
	
	

	cos(180)
	-1.0000
	
	i *
	0.0000

	
	
	
	
	

	cos(270)
	0.0000
	
	i *
	-1.0000

	
	
	
	
	

	
	2nd Roots of Unity
	
	

	
	
	
	
	

	cos(0)
	1.0000
	
	i *
	0.0000

	
	
	
	
	

	cos(180)
	-1.0000
	
	i *
	0.0000
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