FFT notes

· Used in image and signal processing, fast polynomial multiplication

· Breakthrough Algorithm

· We will apply FFT to polynomial multiplication

Polynomial of degree N-1 is completely determined by its value at N different points

p1 = 3x3 – 2x2 + 4x – 2
(determined by value at 4 points)

p2 = 5x + 3

(determined by value at 2 points)

Multiplication of two degree N-1 polynomials yields a polynomial of degree 2N-2

p3 = 2x2 – 3x + 1

p4 = x2 + 2x + 2

p3 * p4 = 2x4 – x3 – x2 – 4x + 2

We need to find the product polynomial’s value at 2N-1 points to completely determine it

We can find the value of the result polynomial by evaluating the two polynomials at the point, and multiplying the results

Simple Algorithm for multiplying 2 polynomials of N-1 degree:

1.
Evaluate two polynomials at 2N-1 different points

2.
Multiply two values obtained at each point

3. Interpolate to find the unique result polynomial that has the given value at these points

Let r(x) be the product polynomial s.t.

r(x) = p(x) * q(x)

Let

p(x) = 1 + x + x2
q(x) = 2 – x +x2
p(x) and q(x) 2 = N-1 (N = 3 (2N – 1 = 5
Let’s evaluate p(x) and q(x) at some 5 points, -2, -1, 0, 1, 2

p(-2) = 3
p(-1) 1

p(0) = 1
p(1) = 3
p(2) = 7

q(-2) = 8
q(-1) 4

q(0) = 2
q(1) = 2
q(2) = 4

r(-2) = 24
r(-1) =4
r(0) = 2
r(1) = 6
r(2) = 28

Coefficients of r(x) can be found by interpolation using Lagrange formula

Lagrange Formula:

r(x) =
[image: image1.wmf]Õ

å

¹

£

£

£

£

-

-

j

i

N

i

i

j

i

N

j

j

x

x

x

x

y

1

1

Ex:
y = p(x) is a polynomial degree 3, s.t. r(1) = 3, r(2) = 7, and r(3) = 13

[image: image2.wmf]2

3

2

*

1

3

1

13

3

2

3

*

1

2

1

7

3

1

3

*

2

1

2

3

)

(

-

-

-

-

+

-

-

-

-

+

-

-

-

-

=

x

x

x

x

x

x

x

r

which simplifies to
r(x) = x2 + x + 1

What is the complexity of this way of polynomial multiplication?

Most convenient points for polynomial interpolation are complex numbers, specifically the complex roots of unity.

sometimes the imaginary parts can cancel out in complex multiplication:

(1 + i)4 = -4

(1 + i)8 = 16
If we divide the equation here by 16 =
[image: image3.wmf]8

2

 we get

[image: image4.wmf]8

2

2

1

÷

ø

ö

ç

è

æ

+

i

 = 1

There are exactly n complex roots of unity, s.t. exists a complex number c where

cn = 1

[image: image5.wmf]1

n

w

 = (n is the principal root of unity

[image: image6.wmf]0

n

w

 = 1 is the first root of unity

all roots can be found by raising the principal root to the kth power k = 0, 1, 2, 3 .. n-1

The sixth roots of unity are as follows

[image: image7.wmf]0

6

w

,
[image: image8.wmf]1

6

w

,
[image: image9.wmf]2

6

w

,
[image: image10.wmf]3

6

w

,
[image: image11.wmf]4

6

w

,
[image: image12.wmf]5

6

w

Note that for even n
[image: image13.wmf]2

/

n

n

w

 = -1 because
[image: image14.wmf](

)

2

2

/

n

n

w

 = 1

For example

[image: image15.wmf]4

8

w

 = -1 because
[image: image16.wmf](

)

2

4

8

w

 = 1

Why? Because

[image: image17.wmf]4

8

w

 =
[image: image18.wmf](

)

4

1

8

w

 by definition

Therefore

[image: image19.wmf](

)

2

4

1

8

÷

÷

ø

ö

ç

ç

è

æ

w

 =
[image: image20.wmf](

)

8

1

8

w

 = 1 by definition of roots of unity (shows
[image: image21.wmf]N

N

w

 =
[image: image22.wmf]0

N

w

, a cycling)

General Rule is:

The nth power of any nth root of unity = 1,

i.e.

[image: image23.wmf](

)

6

0

6

w

=
[image: image24.wmf](

)

6

1

6

w

=
[image: image25.wmf](

)

6

2

6

w

=
[image: image26.wmf](

)

6

3

6

w

=
[image: image27.wmf](

)

6

4

6

w

=
[image: image28.wmf](

)

6

5

6

w

 = 1

Basic idea for FFT is to evaluate the N-1 degree polynomial at all Nth roots of unity

Given two N-1 degree polynomials, we have to evaluate them at 2N-1 points

We can view a polynomial degree of N-1 as a polynomial of degree 2N-2, with n-1 coefficients equal to zero

Example

N = 8

p(x)
= p0 + p1x + p2x2 + p3x3 + p4x4 + p5x5 + p6x6 + p7x7

= (p0 + p2x2 + p4x4 + p6x6) + x (p1 + p3x2 + p5x4 + p7x6)

= pL(x2) + xpR(x2)

Note:

If you square a root of unity, you get another root of unity. Suppose we consider the kth Nth root of unity squared:

[image: image29.wmf](

)

2

k

N

w

 =
[image: image30.wmf]k

N

2

w

0 (k < N

if
2k < N, then clearly it is a different Nth root of unity

if
2k (N,
[image: image31.wmf]k

N

2

w

 =
[image: image32.wmf]N

k

N

%

2

w

if
k = 0, it is the same Nth root of unity

if
2k % N = 0, it is clearly a different Nth root of unity

else
2K % N > 0, it is the (2k – N)th Nth root of unity, different than the kth root

2k – N (k because if it did it would imply that k = N (which is not an Nth root of unity)

Note:

If you square a root of unity, you get an ½ Nth root of unity

Given a 8th root of unity,
[image: image33.wmf]2

8

w

[image: image34.wmf](

)

2

2

8

w

 =
[image: image35.wmf]4

8

w

 and
[image: image36.wmf](

)

4

4

8

w

 = 1

which implies that
[image: image37.wmf]4

8

w

 =
[image: image38.wmf]k

4

w

 , i.e. some kth 4th root of unity

In general,
[image: image39.wmf](

)

(

)

2

/

2

N

k

N

w

 = 1

Now, to compute a polynomial with N coefficients (N-1 degree) on N points, we split it into two polynomials with ½ N coefficients, and so the divide and conquer approach with an exponential size reduction is created.

Background:

Degree 7 polynomial has 8 coefficients (we evaluate at the eight 8th roots of unity)

8th Roots of unity
(
(8 =
[image: image40.wmf]0

8

w

 ,
[image: image41.wmf]1

8

w

 ,
[image: image42.wmf]2

8

w

 ,
[image: image43.wmf]3

8

w

 ,
[image: image44.wmf]4

8

w

 ,
[image: image45.wmf]5

8

w

 ,
[image: image46.wmf]6

8

w

 ,
[image: image47.wmf]7

8

w

But
[image: image48.wmf]4

8

w

 = -1, therefore

8th Roots of unity
(
(8 =
[image: image49.wmf]0

8

w

 ,
[image: image50.wmf]1

8

w

 ,
[image: image51.wmf]2

8

w

 ,
[image: image52.wmf]3

8

w

 ,
[image: image53.wmf]0

8

w

-

 ,
[image: image54.wmf]1

8

w

-

 ,
[image: image55.wmf]2

8

w

-

 ,
[image: image56.wmf]3

8

w

-

Squaring each root produces two consecutive sequences of the 4th roots of unity

[image: image57.wmf]2

8

w

 =
[image: image58.wmf]0

4

w

 ,
[image: image59.wmf]1

4

w

 ,
[image: image60.wmf]2

4

w

 ,
[image: image61.wmf]3

4

w

 ,
[image: image62.wmf]0

4

w

 ,
[image: image63.wmf]1

4

w

 ,
[image: image64.wmf]2

4

w

 ,
[image: image65.wmf]3

4

w

So p(x) = = pL(x2) + xpR(x2)

Now we evaluate p(x) at the 8th roots of unity

p(
[image: image66.wmf]0

8

w

) = pL(
[image: image67.wmf]0

4

w

) +
[image: image68.wmf]0

8

w

pR(
[image: image69.wmf]0

4

w

)

p(
[image: image70.wmf]1

8

w

) = pL(
[image: image71.wmf]1

4

w

) +
[image: image72.wmf]1

8

w

pR(
[image: image73.wmf]1

4

w

)

p(
[image: image74.wmf]2

8

w

) = pL(
[image: image75.wmf]2

4

w

) +
[image: image76.wmf]2

8

w

pR(
[image: image77.wmf]2

4

w

)

p(
[image: image78.wmf]3

8

w

) = pL(
[image: image79.wmf]3

4

w

) +
[image: image80.wmf]3

8

w

pR(
[image: image81.wmf]3

4

w

)

p(
[image: image82.wmf]4

8

w

) = pL(
[image: image83.wmf]0

4

w

) -
[image: image84.wmf]0

8

w

pR(
[image: image85.wmf]0

4

w

)

p(
[image: image86.wmf]5

8

w

) = pL(
[image: image87.wmf]1

4

w

) -
[image: image88.wmf]1

8

w

pR(
[image: image89.wmf]1

4

w

)

p(
[image: image90.wmf]6

8

w

) = pL(
[image: image91.wmf]2

4

w

) -
[image: image92.wmf]2

8

w

pR(
[image: image93.wmf]2

4

w

)

p(
[image: image94.wmf]7

8

w

) = pL(
[image: image95.wmf]3

4

w

) -
[image: image96.wmf]3

8

w

pR(
[image: image97.wmf]3

4

w

)

note: pL evaluated at four values ; pR evaluated at four values (
[image: image98.wmf]0

4

w

,
[image: image99.wmf]1

4

w

,
[image: image100.wmf]2

4

w

,
[image: image101.wmf]3

4

w

)

If we evaluate p(x) at the 8th roots on unity, we evaluate pL and pR at the 4th roots of unity, which necessitates evaluation of pLL, pLR pRL pRR at the 2nd roots of unity. This is the last step as the 2nd roots of unity are 1 and –1.

Assuming that N = 2k, the recursion needs to go through log2n levels for an evaluation at N = 2k roots of unity.

T(n) = 2 * T(
[image: image102.wmf]2

n

) + n (n log n
(i.e. T(8) : eight multiplications plus recursively twice at four multiplications)

The values of the Nth roots of unity are

[image: image103.wmf]k

N

w

 = cos
[image: image104.wmf]÷

ø

ö

ç

è

æ

+

P

1

2

N

k

 + i * sin
[image: image105.wmf]÷

ø

ö

ç

è

æ

+

P

1

2

N

k

Eighth Roots of Unity:

cos(0) + i sin(0),

cos(2Π/8) + i sin(2Π /8),

cos(4Π /8) + i sin(4Π /8),

cos(6Π /8) + i sin(6Π /8),

cos(8Π /8) + i sin(8Π /8),

cos(10Π /8) + i sin(10Π /8),

cos(12Π /8) + i sin(12Π /8),

cos(14Π /8) + i sin(14Π /8)

	
	8th Roots of Unity
	
	

	
	
	
	
	

	cos(0)
	1.0000
	
	i *
	0

	
	
	
	
	

	cos(45)
	0.7071
	+
	i *
	0.7071

	
	
	
	
	

	cos(90)
	0.0000
	+
	i *
	1.0000

	
	
	
	
	

	cos(135)
	-0.7071
	+
	i *
	0.7071

	
	
	
	
	

	cos(180)
	-1.0000
	+
	i *
	0.0000

	
	
	
	
	

	cos(225)
	-0.7071
	+
	i *
	-0.7071

	
	
	
	
	

	cos(270)
	0.0000
	+
	i *
	-1.0000

	
	
	
	
	

	cos(315)
	0.7071
	+
	i *
	-0.7071

	
	
	
	
	

	
	4th Roots of Unity
	
	

	
	
	
	
	

	cos(0)
	1.0000
	
	i *
	0.0000

	
	
	
	
	

	cos(90)
	0.0000
	
	i *
	1.0000

	
	
	
	
	

	cos(180)
	-1.0000
	
	i *
	0.0000

	
	
	
	
	

	cos(270)
	0.0000
	
	i *
	-1.0000

	
	
	
	
	

	
	2nd Roots of Unity
	
	

	
	
	
	
	

	cos(0)
	1.0000
	
	i *
	0.0000

	
	
	
	
	

	cos(180)
	-1.0000
	
	i *
	0.0000

FFT Notes - Julius Dichter, University of Bridgeport © 2003

_1112603142.unknown

_1112763980.unknown

_1112766539.unknown

_1112766981.unknown

_1112768010.unknown

_1113018616.unknown

_1113018678.unknown

_1113020197.unknown

_1113020205.unknown

_1113020214.unknown

_1113018691.unknown

_1113018630.unknown

_1113018665.unknown

_1113018624.unknown

_1112768107.unknown

_1113017724.unknown

_1113017731.unknown

_1113017738.unknown

_1112768108.unknown

_1113017547.unknown

_1112768067.unknown

_1112768092.unknown

_1112768079.unknown

_1112768051.unknown

_1112767874.unknown

_1112767933.unknown

_1112767991.unknown

_1112768002.unknown

_1112767955.unknown

_1112767967.unknown

_1112767941.unknown

_1112767907.unknown

_1112767916.unknown

_1112767897.unknown

_1112767886.unknown

_1112766983.unknown

_1112767126.unknown

_1112766982.unknown

_1112766671.unknown

_1112766957.unknown

_1112766963.unknown

_1112766971.unknown

_1112766979.unknown

_1112766696.unknown

_1112766701.unknown

_1112766950.unknown

_1112766690.unknown

_1112766592.unknown

_1112766627.unknown

_1112766545.unknown

_1112766504.unknown

_1112766527.unknown

_1112766513.unknown

_1112766520.unknown

_1112766510.unknown

_1112766474.unknown

_1112766487.unknown

_1112764059.unknown

_1112761285.unknown

_1112763819.unknown

_1112763909.unknown

_1112763967.unknown

_1112763891.unknown

_1112762057.unknown

_1112763810.unknown

_1112761325.unknown

_1112760071.unknown

_1112761232.unknown

_1112761250.unknown

_1112760114.unknown

_1112760133.unknown

_1112760090.unknown

_1112760037.unknown

_1112760049.unknown

_1112603187.unknown

_1112602112.unknown

_1112602340.unknown

_1112602604.unknown

_1112603074.unknown

_1112602507.unknown

_1112602152.unknown

_1112602275.unknown

_1112602125.unknown

_1112602121.unknown

_1112601396.unknown

_1112601903.unknown

_1112602100.unknown

_1112601892.unknown

_1112600956.unknown

_1112601314.unknown

_1112600618.unknown

